SARDRICS

Simplifying Progress

CIM[®] SO3 Monolithic 96-Well Plate for Fast and Efficient rAAV Capture Step Screening After Kryptonase-TFF Pre-Treatment

Kaja Bažec, Mirjam Krašna, Maja Leskovec and Mojca Tajnik Sbaizero*

Sartorius BIA Separations, Mirce 21, SI-5270 Ajdovščina, Slovenia *Corresponding author: mojca.tajniksbaizero@biaseparations.com

Introduction

Standard 96-well design offers a great advantage for screening many samples or conditions and supports process automatization. Our approach was multi-parallel screening of different mobile phases for rAAV capture step using CIM® SO3 0.05 mL Monolithic 96-well plates. Buffers of different pH, sodium chloride concentrations and use of Poloxamer 188 were screened to purify AAV2/9 clarified lysate obtained from Sf9 cells. Sample was pretreated by tangential flow filtration (TFF) coupled with nuclease treatment – Kryptonase^{™*1}. It was shown that the optimal conditions were buffers of pH 3.5, 500 mM NaCl, with addition of Poloxamer 188. Verification of results with selected buffer resulted in high capacity (1.44 E14 capsids/mL SO3), great recovery (87.7%) and excellent protein and DNA reduction (99.98 and 99.25%).

*Kryptonase[™] was discontinued in January 2023

Figure 1: Experimental Design to Optimize rAAV Capture Step Using CIM® SO3 0.05 mL Monolithic 96-Well Plates

Methods and Automating Analytics From CIM® SO3 0.05 mL Monolithic 96-Well Plate

Kryptonase-treated rAAV2/9 TFF retentate was acidified to selected pH (pH 3.5, 4.0, 4.5 or 5.0) and filtered using Sartorius Minisart PES 0.45 µm and loaded to the pre-conditioned CIM® SO3 0.05 mL Monolithic 96-well Plate with 2 µm channels. Plate was washed with different mobile phases A (MPA; different pH, sodium chloride and poloxamer conc.) for 10 column volumes (CV). Elution was performed using 4 CV of mobile phase B (MPB; buffers with corresponding pH and poloxamer conc. with 2 M NaCl). Cleaning in place (CIP) and regeneration was performed as recommended in Instruction manual. To determine optimal combination of parameters for SO3 capture step wash and elution fractions were analyzed using fluorescence microplate reader (Tryptophan native fluorescence; ex. 280 nm, em. 348 nm), rAAV9 capsid-specific ELISA and SDS-PAGE.

Wash Fraction		NaCl													
		0 mM			250 mM			500 mM			750 mM				
			1	2	3	4	5	6	7	8	9	10	11	12	
	3.5 -	А	65,233	65,297	66,259	65,798	67,156	68,122	67,159	68,513	68,884	67,105	68,105	66,690	-
		В	64,787	66,494	66,406	66,662	67,134	67,265	66,832	67,821	67,988	67,914	66,925	67,037	+ o
	4.0 -	С	66,772	68,385	68,177	66,125	68,879	68,415	69,240	69,276	70,025	81,885	81,469	81,405	0 - -
т		D	66,560	68,089	67,259	67,294	66,827	67,787	67,254	68,115	69,321	81,638	81,007	80,275	+
d	4.5 -	Е	67,265	67,333	69,174	69,389	68,808	69,671	83,254	83,583	84,566	85,424	85,168	84,563	- 2
		F	65,721	66,717	67,707	66,986	67,780	67,879	81,455	82,679	82,103	83,709	83,805	84,200	+ 0
	5.0 -	G	66,588	66,672	67,798	81,413	81,855	82,225	88,428	87,930	88,305	89,215	90,079	88,251	-
		Н	65,627	66,379	66,821	79,630	79,784	80,494	87,216	87,809	88,554	88,715	87,967	87,645	+

Figure 2A: Fluorescence Read for Wash Fractions

Elution Fraction		NaCl													
		0 mM			250 mM			500 mM			750 mM				
			1	2	3	4	5	6	7	8	9	10	11	12	-
	3.5	А	57,049	58,073	58,338	62,732	63,517	63,877	54,687	64,699	63,230	64,552	62,345	64,528	-
		В	60,374	60,884	60,969	60,953	61,033	60,056	61,057	62,966	61,622	62,839	61,278	61,121	+ α
	4.0	С	59,292	59,371	60,820	62,027	61,732	60,927	63,985	62,535	64,211	52,750	52,993	53,262	
т		D	64,016	64,642	64,748	66,076	64,309	65,874	65,003	65,700	64,938	52,560	52,321	53,178	+ 6
d	4.5	Е	61,617	63,219	63,786	66,022	62,957	61,910	50,397	50,285	49,660	54,142	54,885	55,507	- 7
		F	66,733	68,392	69,320	68,254	66,904	67,831	53,875	53,322	53,203	52,794	53,693	53,870	+ d
	5.0	G	59,611	62,250	62,281	53,926	52,547	51,991	49,957	51,924	51,158	54,221	55,022	55,586	-
		Н	71,391	69,522	69,936	60,368	59,550	60,353	54,160	53,145	54,353	53,883	53,364	53,815	+

Figure 3B: Additional Analytics of Elution Fractions for Protein Distribution Using SDS-PAGE

The combination of parameters (different pH, sodium chloride and poloxamer concentration) that gave us the highest virus titer (vp/mL) value and lowest impurity content in elution fractions was selected as the most optimal mobile phase A (pH 3.5 and 500 mM NaCl in presence of Poloxamer 188).

Verification of Results on CIMmic[®] and CIMmultus[®] Line With Additional Analytics

Optimal mobile phase A selected in CIM® 96-well plate screening, was utilized for dynamic binding capacity (DBC) testing on CIMmic® 0.1 mL SO3 disc (Figure 4B). Experimentally defined capacity was 1.44 E14 vector capsids/mL of SO3 monolith. Verification of results was performed also on CIMmultus® preparative line using sodium chloride linear gradient (Figure 4A). Elution fraction was analyzed for total protein (BCA) and DNA (Picogreen) content. High vector recovery and strong reduction of impurities were determined for selected capture step parameters, confirming successful optimization of downstream process (Figure 4B).

Figure 4A: Cation Exchange Chromatography of AAV2/9 Sample on CIMmultus® SO3 1 mL. Sample: TFF Retentate, Acidified to pH 3.5. MPA: 500 mM NaCl, pH 3.5 and Poloxamer 188, MPB: 2 M NaCl, pH 3.5 and Poloxamer 188, MPC: 1 M NaOH + 2 M NaCl. Method: Sample Load, 30 CV MPA Wash, 25 CV Linear Gradient 0 to 100% MPB, 10 CV Step MPB, 3 CV MPC. Detection: Absorbance (260 nm, 280 nm) **Figure 4B:** Under Selected Conditions Capture Step Was Robust and High Purity Was Observed in the Elution AAV Fraction

Figure 2B: Fluorescence Read for Elution Fractions

Fluorescence readings (FLD) of elution and wash showed stronger signal in wells where rAAV was detected. For wash fractions, wells with higher pH and/or sodium chloride concentration in mobile phase A showed inefficient binding observed as high flourescence signal (Figure 2A). On the other hand, higher FLD values in elution fractions correlate with successful rAAV binding. For pH 3.5 all tested NaCl concentrations up to 750 mM showed binding of rAAV to the SO3 monolith, whereas binding at higher pH resulted in tolerating lower NaCl conditions (Figure 2B). Impurity profile and efficiency of rAAV2/9 capture were verified with capsid specific ELISA analytics (Figure 3A) and SDS-PAGE (Figure 3B).

ELISA Analysis Elution Fraction			NaCl													
				0 mM		250 mM				500 mM		750 mM			_	
			1	2	3	4	5	6	7	8	9	10	11	12	_	
	3.5	А								1.49E+12			1.48E+12		-	
		В								2.32E+12			2.10E+12		+ œ	
	4.0	С					1.74E+12			1.81E+12			4.54E+10		r 18 1	
т		D					2.24E+12			1.83E+12			9.70E+10		+ E	
d	4.5	Е		2.04E+12			2.73E+12			4.77E+10					<u>o</u>	
		F		2.11E+12			2.27E+12			9.73E+10					+ d	
	ΕO	G		2.17E+12			3.14E+11								-	
	5.0	Н		2.11E+12			4.18E+11								+	

Figure 3A: Additional Analytics of Elution Fractions for rAAV Titer

Conclusion

- CIM[®] SO3 0.05 mL Monolithic 96-well plates are efficient and fast tool for rAAV capture step screening, including automating of procedure and analytics steps
- Obtained results can be applied to CIMmultus[®] preparative line
- Sample obtained by TFF coupled with Kryptonase[™] treatment gave high recovery and high protein | DNA reduction after optimized capture step
- Other applications and optimizations are possible with usage of CIM® 96-well plates

References

1. Gagnon P., Leskovec M., Goričar B., Štrancar A. Streamlining Industrial Purification of Adeno-Associated Virus. Bioprocess International, December 2020.