Incucyte® Neurolight Lentivirus Reagents For Labeling Live Neuronal Cells # Product Information # Presentation, Storage and Stability Incucyte® Neurolight Lentivirus Reagents are supplied as kits containing two vials, each vial containing 0.45 mL of 3rd generation HIV-based, VSV-G pseudotyped lentiviral particles suspended in DMEM, providing sufficient quantity for 1 x 96-well plate. | | | Ex. Max | Em. Max | Storage | Stability | |--|----------|------------------|---------|---------|-------------------------------| | Product Name | Cat. No. | | | | | | Compatible with Incucyte® L
with Green Red Optical Mc | | ystems configure | ed | | | | Incucyte® Neurolight
Red Lentivirus | 4807 | 588 nm | 633 nm | -80° C | 6 months from date of receipt | | Compatible with Incucyte® L
with an Orange NIR or a Gre | | , , | ed | | | | Incucyte® Neurolight Orange Lentivirus | 4808 | 555 nm | 584 nm | -80° C | 6 months from date of receipt | Safety data sheet (SDS) information can be found on our website at www.sartorius.com # Background The Incucyte® Neurolight Lentivirus Reagents are third generation HIV-based, VSV-G pseudotyped lentiviral particles to enable highly-efficient, yet non-disruptive labeling of primary or iPSC-derived neurons. Once integrated into cells of interest, a neuron-specific (synapsin) promoter drives stable, long-term expression of a red or orange fluorescent protein (mKate2 or TagRFP, respectively) in neuronal cell bodies and neurites. This enables the kinetic quantification of neurite length and branching over a period of several weeks, even in the presence of astrocytes and other non-neuronal cell types such as microglia. The Neurolight Red and Orange Lentivirus Reagents have been validated for use with the Incucyte® Live-Cell Analysis Systems for measurements of neurite outgrowth, maturation, and the disruption of neurite networks. ## Recommended Use This product is designed for use in a neuronal co-culture assay format. Performance in a mono-culture format has not been validated. We recommend thawing the Incucyte® Neurolight Lentivirus Reagents on ice immediately prior to use. The lentivirus reagents can be prepared in full media and added directly to plated cells, per the protocol below. # **Example Data** # Phase-fluorescent blended image # Fluorescent blended image Figure 1: Representative images of rCortical Neurons infected with Incucyte® Neurolight Orange Lentivirus in a co-culture with rAstrocytes. Note the neuronal specific labeling of the orange (TagRFP) fluorescent protein and healthy cell morphology. # Quick Guide 2. Day 0 (+4 hours) 3. Day 1 4. Day 3 5. Day 6, 9, 12... Plate neurons. Add Neurolight Lentivirus. 95% media replacement. Plate rAstrocytes. Begin Incucyte® scanning. Add Neurolight 50% media replacement. Add Uridine +5 -Fluoro-2'deoxyuridine. 50% media replacement. Treatments at Day 6 and beyond. # Protocols and Procedures # **Materials Required** ### Software: Incucyte® Neurotrack Analysis Software Module (Cat. No. 9600-0010) # Reagents: - Incucyte® Neurolight Lentivirus - 5-Fluoro-2'-deoxyuridine—Sigma Aldrich (Cat. No. F0503) - Uridine—Sigma Aldrich (Cat. No. U3003) - Surface coating materials for 96-well plate - Neuronal cell culture medium - Neuronal cells - Astrocytes ### Notes: This product is designed for use in a neuronal co-culture assay format. Performance in a mono-culture format has not been validated. Use rigorous aseptic technique at all times, opening the culture plate and medium bottles within a tissue culture hood only. # **Optimization Protocols** We recommend optimizing Neurolight Lentivirus volume per well for each new lot of virus or each uncharacterized cell type tested per our guidelines below. The optimization outline below will generate a 3-fold serial dilution of virus from 30–0.04 $\mu L/well$ when added to a 96-well plate containing neurons seeded in a 100 μL volume. - 1. Plate the desired density of neurons, 100 μL per well in a 96-well plate pre-coated with appropriate matrix. The seeding density will need to be optimized for each neuronal cell type used; however, we have found that 15,000 viable cells per well (150,000 cells/mL seeding stock) for primary neurons and iPSC-derived neurons is a reasonable starting point. - Note: For immortalized cell lines, passage number can have a significant effect on lentiviral transduction efficiency. Low passage cells should be used in all experiments. - 2. Let the covered plate sit at ambient temperature in the tissue culture hood for 30 minutes and then place inside the incubator. - Critical: This step ensures the uniform distribution of cells in each well. - 3. Incubate the 96-well plate containing neurons at 37° C for 4 hours prior to infection. - 4. 2-3 hours after plating neurons, thaw one vial of Neurolight Lentivirus on wet ice (approx. 1-2 hours). - In a sterile 96-well culture plate, create a serial dilution of Neurolight Lentivirus using the provided plate map (Figure 2). - a. In a sterile 2 mL vial, dilute 360 μ L of Neurolight Lentivirus in 840 μ L of neuronal culture media (NCM) for a final volume of 1200 μ L. - b. Add 180 μL of diluted Neurolight Lentivirus to wells A1-A6. - c. Add 120 μ L of NCM to wells B1-B6 and continue down to wells H1-H6. - d. Using a multi-channel pipette, perform a 1:3 serial dilution by transferring 60 μ L of Neurolight Lentivirus from wells A1-A6 to wells B1-B6. Pipette up and down a few times to mix reagent within each well. - e. Continue the 1:3 dilution down the 96-well plate, stopping at row G. Row H is a no virus control, containing media only. - Note: The leftover lentivirus should be used right away or be disposed, since repeated freeze-thaw cycles may decrease virus titer. - 6. 4 hours post plating, remove plated neurons from incubator. - 7. Gently add 100 μ L per well of diluted virus from step 5, to the 96-well plate containing neurons with a final volume of 200 μ L per well. - 8. Return the plate to 37° C immediately and incubate the plate for 16–24 hours. - 9. Before plating astrocytes, gently remove 190 μL transduction media and add 140 μL /well of appropriate neuronal medium. - 10. Initiate co-culture by plating 50 μ L of astrocytes on top of the infected neurons. We recommend s eeding astrocytes at 15,000 viable cells per well (300,000 cells/mL seeding stock), whether astrocyte suspension is prepared from fresh stocks or cryopreserved cells. - 11. Place plate into the Incucyte[®] Live-Cell Analysis System and schedule to acquire phase and fluorescent images every 6 hours. - 12. Approximately 48 hours post-plating astrocytes, remove 100 μ L of media from each well and replace with 100 μ L fresh media containing 2X concentrations of 5-Fluoro-2'-deoxyuridine and uridine to a final assay concentration of 8 μ g/mL and 28 μ g/mL, respectively, in order to arrest astrocyte proliferation. - 13. Monitor the cultures over the next 5–12 days, performing a 50% media change every third day. - 14. Analyze the neurite outgrowth with the Incucyte® Neurotrack Analysis Software Module. We recommend using the neurite length measurement to ensure the best determination of virus volume used for infection. The lowest virus volume that results in the highest neurite outgrowth measurement should be selected for subsequent neurite outgrowth experiments. - 15. Once the optimal virus volume has been determined, calculate the virus volume required for making an 11 mL virus transduction solution sufficient to infect an entire 96-well plate: Note: (volume of virus/well) x 110 wells = total amount of virus required for assay # **Example Data for Virus Optimization** Figure 2: Schematic of Neurolight Lentivirus assay optimization, highlighting recommended cell seeding and Neurolight Lentivirus dilutions (A). Kinetic graph of neurite length showing maximum neurite length using 10 or 3.33 µL/well of Neurolight Lentivirus (B). # Neurite Co-Culture Protocol (Post Viral Optimization) - 1. Plate neurons at optimized density (e.g., 15,000 cells per well), 100 μ L per well (150,000 cells/mL seeding stock), in a 96-well plate pre-coated with appropriate matrix. Incubate at ambient temperature for 30 minutes. - 2. Place in incubator and allow 4 hours for cells to adhere. - 3. 2–3 hours after plating neurons, thaw the remaining vial of lentivirus on wet ice (approx. 1–2 hours). - Add appropriately diluted Neurolight Red or Orange Lentivirus to achieve optimized virus concentration. The final well volume should be 200 μL per well. - 5. Incubate the 96-well plate at 37° C for 16-24 hours. - 6. Before plating astrocytes, remove 190 μ L transduction media and add 140 μ L/well of appropriate neuronal medium. - Initiate co-culture by plating 50 μL of astrocytes on top of the infected neurons. We recommend seeding astrocytes at 15,000 viable cells per well (300,000 cells/mL seeding stock), whether astrocyte suspension is prepared from fresh stocks or cryopreserved cells. - 8. Place plate into the Incucyte® Live-Cell Analysis System and schedule to acquire phase and fluorescent images every 6 hours using the 20X objective. (See Incucyte® User Manual for detailed instructions on setting up an imaging schedule.) - 9. Approximately 48 hours post-plating astrocytes, remove 100 μ L of media from each well and replace with 100 μ L fresh media containing 2X concentrations of 5-Fluoro-2'-deoxyuridine and uridine to a final assay concentration of 8 μ g/mL and 28 μ g/mL, respectively, in order to arrest astrocyte proliferation. - 10. Monitor the cultures over the next 5–12 days, performing a 50% media change every third day. Note: Transduction efficiencies of 60–70% are typical. In some cases, it may be preferred to use a lower concentration of lentivirus in order to track neurite dynamics in a high density culture. # Safety Considerations The backbone of the Lentivirus particles in this system has been modified to improve their safety and minimize their relation to the wild-type, human HIV-1 virus. These modifications include: - The lentiviral particles are replication-incompetent and only carry the non-oncogenic gene of interest. - A deletion in the 3' LTR (.U3) resulting in "self-inactivation" (SIN) of the lentivirus after transduction and genomic integration in the target cell (Yee et al, 1987; Yu et al, 1986; Zufferey et al, 1998). This alteration renders the lentiviral genome incapable of producing packageable virus following host integration. - The virus is pseudotyped with VSV-G from Vesicular Stomatitis Virus in place of the HIV-1 envelope (Burns et al, 1993; Emi et al, 1991; Yee et al, 1994). Replication-defective lentiviral vectors, such as the 3rd generation vector provided in this product, are not known to cause any diseases in humans or animals. However, lentivirus particles still pose some biohazardous risk because they can transduce primary human cells and can integrate into the host cell genome thus posing some risk of insertional mutagenesis. For this reason, we highly recommend that you treat lentiviral stocks as Biosafety Level 2 (BSL-2, BL-2) organisms and strictly follow all published BL-2 guidelines with proper waste decontamination. For more information about the BL-2 guidelines and safe lentivirus handling, we recommend referring to local documentation based on geography. The Essen BioScience 3rd generation HIV based lentiviruses meet BL-2 requirements based on the criteria in the document, "Biosafety in Microbiological and Biomedical Laboratories", 5th Edition, published by the Centers for Disease Control (CDC). This document may be downloaded at http://www. cdc.gov/biosafety/publications/bmbl5/index.htm Institutional Guidelines: Safety requirements for use and handling of lentiviruses may vary at individual institutions. We recommend consulting your institution's health and safety guidelines and/or officers prior to implementing the use of these reagents in your experiments. # Licenses and Warranty Essen BioScience products, Incucyte® Neurolight Orange Lentivirus and Incucyte® Neurolight Red Lentivirus, contain proprietary nucleic acid(s) coding for proprietary fluorescent protein(s) being, including its derivatives or modifications, the subject of pending patent applications and/or patents owned by Evrogen JSC (hereinafter "Evrogen Fluorescent Proteins"). The purchase of Essen BioScience products incorporating these fluorescent proteins conveys to the buyer the non-transferable right to use Evrogen Fluorescent Proteins only for research conducted by the buyer. No rights are conveyed to modify or clone the gene encoding fluorescent protein contained in this product or to use Evrogen Fluorescent Proteins for commercial purposes. The right to use Evrogen Fluorescent Proteins specifically excludes the right to validate or screen compounds for commercial purposes. For information on commercial licensing, contact Evrogen Licensing Department, E-Mail: license@evrogen.com. A complete suite of cell health applications is available to fit your experimental needs. Find more information at www.sartorius.com/incucyte For Research Use Only. Not For Therapeutic or Diagnostic Use. # Sales and Service Contacts For further contacts, visit www.sartorius.com # Essen BioScience, A Sartorius Company www.sartorius.com/incucyte E-Mail: AskAScientist@sartorius.com Units 2 & 3 The Ouadrant Newark Close Royston Hertfordshire SG85HL United Kingdom # North America Essen BioScience Inc. 300 West Morgan Road Ann Arbor, Michigan, 48108 USA Telephone +1 734 769 1600 E-Mail: orders.US07@sartorius.com ### Europe Essen BioScience Ltd. Telephone +44 1763 227400 euorders.UK03@sartorius.com # **APAC** Essen BioScience K.K. 4th Floor Daiwa Shinagawa North 1-8-11 Kita-Shinagawa Shinagawa-ku, Tokyo 140-0001 Japan Telephone: +81 3 6478 5202 E-Mail: orders.US07@sartorius.com